An internship at the USRA-NASA Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center's Advanced Supercomputing Facility introduces graduate students to scientific opportunities in quantum information sciences and trains them to do research related to the most advanced quantum computing platforms. Students will receive valuable experience working on teams, undertaking projects in advanced computing, and developing quantum and classical methods to solve problems in important application or fundamental domains. The program is funded by NASA, AFRL, USRA and NSF.

Students, which preferably should be enrolled in a Ph.D. program (but motivated master's or undergrads are also considered) or have otherwise previous quantum computing research experience, are accepted to a 12-to-24 week program. Applications are open all year round. These students work in close collaboration with quantum scientists, receiving hands-on training, and undertake individualized research projects, finally resulting in a publication. Students will also participate in seminars and workshops with researchers from other organizations doing quantum research, including those from academic institutions, government laboratories, and commercial organizations. Participants receive a stipend to cover living expenses and travel during the program.

**Applications are now open for 2022 and 2023.** Please inquire at [email protected] or click on "Apply Now!" at the top of the page and fill in the form.

**Potential topics (not exhaustive list):**

Quantum Optimization and Sampling Algorithms (e.g. QAOA/VQE/AQC)

Benchmarking NISQ Computers

Compilation/Embedding of Quantum Algorithms

Quantum error-mitigation and correction methods

Quantum Algorithms for Materials, Chemistry, Non-equilibrium systems and High-Energy Physics

Numerical Simulation of Quantum Systems

Noise Modeling and Open Quantum Systems

Physics of Oscillator Based Computing and Coherent Optical Ising Machines

Quantum Complexity Theory

(Quantum) Machine Learning applied to Quantum Computing

Theory of circuit Quantum Electrodynamics Systems

Science and technology communication

Software Engineering for Data Analysis and High Performance Computing

2023

2022

2021

2020

2019

2018

2016

All

Efficient Implementation of Coherent Ising Machine using FPGA

Cornell University

Years participated:
2023

Mentor:
Aaron Lott, Davide Venturelli

Bibek Pokharel

University Southern California

Years participated:
2016

Benchmarking Stochastic Parameterized Methods with Collective Autonomous Mobility Problems

Williams College (now at New York University)

Years participated:
2022-2023

Mentor:
Zoe Gonzalez Izquierdo

Studying noise in QAOA

The goal of this internship is to work on some follow up ideas from our recent arXiv:2002.11682 studying noise in QAOA. In particular of interest is how sensitive QAOA is to the initial state. We will investigate numerically how the optimal angles depend on the initial state distribution. Another related research aspect is if there can be a notion of a ārobust parameter setā, such that one can find sets of QAOA angles so that the resulting cost is still āgoodā even when the initial state is not prepared precisely or if there is noise in the circuit. Time permitting, we may also try to run some experiments on IBM/Rigetti hardware to verify the noise modeling put forward in the above paper.

Hardware-Accelerated Parallel Tempering and Non-Equilibrium Monte Carlo Methods

Decomposition Methods for Discrete Optimization Problems Leveraging Ising Solver

UCLA

Years participated:
2022-2023

Publications

Mentor:
Aaron Lott, Davide Venturelli

Science Communication and Analysis of Quantum Machine Learning and OptimizationĀ Circuits

Integrative Research in Emerging Technologies